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Abstract--We have developed a three-dimensional finite element model to study wrench deformation of the 
crust regarded as an elasto-plastic material obeying Murrell's extension of Griffith's failure criterion. 

Numerical experiments using this model predict that the imposed basal wrenching is accommodated by an 
array of oblique Riedel-like shears and Y-shears (parallel to the direction of wrenching). The partitioning of 
deformation between the two types of structure depends on the width of the zone of imposed basal wrenching and 
the existence of a component of deformation in the x-direction (normal to the direction of wrenching). 

The Riedel shears are arranged in spiral-like structures that root into the basal wrench zone. In cross-section, 
the Riedel shears resemble wedge-shaped flower structures similar to those often observed in seismic cross- 
sections. The 'polarity' of the flower structures is positive (or palm-tree-like) in transpression experiments and 
negative (or tulip-like) in transtension experiments. The orientation of the Riedel shears throughout the crust 
obeys Mohr's hypothesis for incipient faulting combined with Murrell's failure criterion. 

The model also predicts plastic dilatancy inversely proportional to the square root of the confining pressure; 
this result agrees qualitatively with field observations and the results of sand-box experiments and quantitatively 
with direct measurement of dilatancy during high-pressure rock-deformation experiments. 

INTRODUCTION 

IT is commonly postulated that, in the brittle domain, 
crustal rocks obey the Coulomb-Navier failure criterion 
(Coulomb 1773). The application of the Coulomb- 
Navier criterion has apparently been very successful in 
predicting fault patterns observed in the field and in 
scaled experiments on analogue materials such as dry 
sand or clay (Riedel 1929). The Coulomb-Navier cri- 
terion predicts that, at failure, there is a linear relation- 
ship between the normal and shear stresses acting across 
the plane of failure. From such a linear relationship very 
simple and attractive geometrical arguments have been 
derived relating the geometry of the plane of failure to 
the directions of the principal stresses. However, it has 
often been noted that the results of deformation experi- 
ments on rock samples cannot be fitted by a simple linear 
relationship such as the Coulomb--Navier criterion 
(Murrell 1965, Paterson 1978). This seems to indicate 
that the Coulomb-Navier criterion may be an over- 
simplification of the real brittle behaviour of crustal 
rocks that is only valid under specific stress conditions 
such as those characteristic of the near surface. Further- 
more, because the criterion depends on the value and 
orientation of the principal stresses, it is rather difficult 
to test in the field. In fact, the criterion is often used to 
constrain the geometry of the regional stress field from 
fault orientations rather than vice versa. There is there- 
fore a need for further developing and testing of rheolo- 
gical models for the Earth's brittle crust. 

Scaled laboratory experiments on analog materials 
such as dry sand or clay have been used to develop and 
constrain mechanical models (Riedel 1929, Horsfield 

1977, Naylor et al. 1986, Richard & Cobbold 1989). 
Some rock properties such as cohesion or elasticity 
cannot however be properly scaled to the finite dimen- 
sions of the laboratory. Moreover, as in natural 
examples of crustal deformation, the nature of the stress 
field within the deforming sample is rather difficult to 
determine especially following finite strains and dis- 
placements. 

Numerical analyses have also been used successfully 
to reproduce the large scale features of crustal defor- 
mation from which mechanical considerations have 
been derived (Braun & Beaumont 1987, Bassi 1991, 
Ch6ry etal.  1991). Numerical models offer the attractive 
benefit of providing a complete picture of the stress and 
strain fields within the deforming body. Unfortunately, 
numerical modelling of the Earth's crust has been lim- 
ited so far by the approximations of two-dimensionality 
and/or infinitesimal deformations. 

In this paper, we present the results of a complex 
three-dimensional finite element model of the brittle 
crust based on Murrell's extension in three dimensions 
of Griffith's failure criterion. The model is used to 
perform a series of finite deformation experiments at the 
crustal scale, the results of which are compared to field 
and laboratory observations to test the applicability of 
Murrell's criterion to the brittle behaviour of crustal 
rocks. 

Wrench tectonics offers a natural laboratory in which 
models of the crust's rheological behaviour may be 
easily tested. Indeed, past and present-day examples of 
strike-slip faults or terranes are numerous and have been 
extensively studied. Moreover, because strike-slip de- 
formation usually does not result in substantial vertical 
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movement of the surface, structures formed by horizon- 
tal shearing of the Earth’s crust are little affected by 
erosion or sedimentation and are therefore readily 
observable. Unfortunately, due to its fundamental 
three-dimensional nature, strike-slip deformation can- 
not be properly addressed under the assumption of two- 
dimensionality. 

In the paper, we first describe the ‘classical’ theory of 
wrench faulting based on the Coulomb-Navier failure 
criterion. We then compare it to predictions based on 
Murrell’s criterion under uniform shear stress con- 
ditions. A series of numerical experiments performed 
with the finite element model are then analysed in the 
light of the results of the simplified stress analysis. 
Results from laboratory experiments and field obser- 
vations are also used to test the numerical model predic- 
tions. 

FAULT PATTERNS UNDER UNIFORM STRESS 
CONDITIONS 

In a material obeying the Coulomb-Navier fracture 
criterion, failure takes place on a plane when the shear 
stress acting on that plane, r, attains the value (Coulomb 
1773): 

/T/ = S” -pa, (I) 

where So is the inherent shear strength of the rock, ,u the 
coefficient of internal friction and o the normal stress 
acting on the plane. By convention, tensile stresses are 
positive. 

The state of stress in a region of the crust subjected to 
a uniform horizontal shear stress, ~7~) (Fig. la) is: 

o .K \ = (Jyy = azz = --pg.2 
(2) 

u .I,! = 0,); uyz = a,, = 0, 

where p is the density of the crust and z is measured from 
the surface, positive downwards. The corresponding 
normal and shear stresses on a plane whose normal is 
defined by the angles (@,0) (defined in Fig. lb) are given 
by: 

0 = --sz + a0 sin 2f$ sin20 
r = ff,, cos2$ sin 8. 

The principal stresses are given by: 

(3) 

or = -pgz + a(, 
01 = -pgz (4) 
(Is = -pgz - a() 

and their orientations are shown in Fig. l(a). 
Introducing equation (3) into equation (l), we obtain 

the following relationship: 

o” = sin 0[ + cos 2@ + p sin 21$ sin 01’ (5) 

the minimum value of which takes place at angles: 

a. 

Fig. 1. (a) Principal stress ((J, , y, us) orientations in a crustal block 
under strike-slip stress conditions. (b) The angles q3 and 0 are used to 
define the direction of the normal, II, to a plane. o and r are the stress 
components in a direction normal and tangential to the plane, respect- 
ively. (c) Orientation of the Riedel shears R and R' in a material 
obeying the Coulomb-Navicr failure criterion with respect to the 

direction of the most compressive principal stress, or. 

where 1/, is the angle of internal friction defined by: 

tan VI =,u. (7) 

Shearing should therefore be initiated along vertical 
faults oriented at angles !Z (n/4 - v/2) with respect to the 
direction of the greatest compressive stress, us, and this 
irrespective of the inherent shear strength, So, and the 
depth (Fig. lc). 

In shear experiments, the geometry of these potential 
Coulomb faults was first reproduced by Riedel(1929) in 
a wet clay cake. They therefore carry the name of Riedel 
shears. Those forming the smallest angle with the direc- 
tion of shear (the y-direction) are called synthetic or 
R-shears; those that form the smallest angle with the 
x-direction are called antithetic or R’-shears. The theory 
has also been used to explain the geometry of surface 
faulting in tectonic shear zones (see, for example, 
McMahon Moore 1979). 

The simple Coulomb-Navier criterion predicts that 
the orientation of the Riedel shears is independent of the 
gravitational hydrostatic stress and therefore should 
remain planar throughout the entire brittle crust. It is, 
however, a well known fact (Harding 1985, Naylor et al. 
1986, Richard & Cobbold 1989) that the synthetic Rie- 
de1 shears tend to rotate with increasing depth and to 
align themselves with the direction of shearing (that is at 
45” to the horizontal principal stresses) to form so-called 
‘flower’ structures (Fig. 2a). It has been suggested that, 
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at some depth within the crust, there exists a boundary 
between two rigid blocks that are sliding one against the 
other (Fig. 2b). The shearing between the two blocks is 
transferred to the overlying brittle crust. Close to the 
rigid blocks, the shearing is limited to a narrow zone 
aligned with the strike of the boundary between the two 
blocks; further away from the blocks, deformation takes 
place on a wider scale and Riedel shears are allowed to 
develop at angles determined by the angle of internal 
friction of the material according to equation (6). 

This model is based on the hypothesis that there exists 
somewhere in or just below the crust a layer where the 
Coulomb-Navier criterion does not hold (the crystalline 
basement beneath a sedimentary basin, a mid-crustal 
'strong' layer or the uppermost mantle?). Although we 
do not dispute the physical plausibility of the 'rigid block 
model ' ,  we wish to propose an alternate, more natural 
explanation for the formation of flower structures based 
on an alternative criterion for the inception of rock 
failure. 

Extending the work of Griffith (1921) to three dimen- 
sional stress distributions, Murrell (1963) suggested the 
following criterion for rock failure expressed in terms of 
the principal stresses: 

(Or I --  02) 2 -+- (O" 2 --  0"3) 2 

-{- (0" 3 --  O"1) 2 "}- 24To(0-1 + 0" 2 + 03)  m_ 0,  ( 8 a )  

where To is a material property called the tensile 
strength. In principal stress space, this criterion is rep- 
resented by a paraboloid of revolution around the press- 
ure (or hydrostatic) axis. Note that the relationship (8a) 

a .  Riedel 
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Fig. 2. (a) Schematic representation of spiral Riedel shears as ob- 
served in scaled laboratory experiments and their possible interpre- 
tations in terms of 'flower' structures observed along vertical seismic 
reflection profiles. (b) The 'basement wrench' model in which two 
rigid basement blocks slide pass each other resulting in a more diffuse 

deformation in the overlying softer sedimentary cover. 

breaks down for tensile principal stresses and it must be 
replaced by one of the following equalities: 

0,1 = To; 0,2 = To; 0-3 = To. (8b) 

In the special range of stress states for which 

0-1 + O"3 
0-2 - - - ,  (9) 

2 

Murrell (1963) showed that the criterion may be ex- 
pressed in terms of the normal (ty) and tangential (r) 
stresses on a reference plane in the following way: 

r 2 + 12T 0 o = 36T 0. (10) 

This relationship corresponds to a parabola in the [0-,r] 
Mohr space. 

Mohr's criterion for incipient fault orientation states 
that faults will develop preferentially along surfaces the 
normal of which makes an angle fl with the most tensile 
principal stress, ol, satisfying the following relationship 
in the [a,r] space: 

Or 
- cot 2/5. (11) 

00- 

Combining equations (10) and (11) leads to: 

36T 2 
cos2 2fl - r2 + 36T2. (12) 

From equations (8) and (9), we may deduce that, at 
failure, the following relationship applies between the 
maximum and minimum principal stresses: 

(0-1 - -  03) 2 + 247"0(O1 + 03) = 0. (13) 

Combining equations (12) and (13) and after some 
algebra, one finally obtains: 

cos2f l=  l O l - O 3  (14) 
2 o 1 + o  3" 

The same expression was derived by Murrell (1958) 
based on the two-dimensional version of (8). In a crust 
under shear, equation (4) combines with equation (14) 
to yield: 

1 ~ (15) cos 2/5 = ~ , 

where 

xt t _ p g z  
4T0" 

Note that equation (15) is only valid if W -> 3/4; in cases 
where W < 3/4, equation (15) should be replaced by 
cos 2fl = 1. 

Close to the surface (xF = 3/4), the Riedel shears have 
degenerated into a single fault plane parallel to the 
direction of the most compressive stress (o3). As depth 
(and overburden thickness) increases, a system of two 
Riedel shears develop one on either side of the direction 
of the most compressive stress. For large values of W, the 
Riedel shears are orthogonal and the synthetic (or main) 



1176 J. BRAUN 

shear is practically aligned with the direction of the 
applied shear stress, o0. It is therefore a 'natural '  behav- 
iour of a crust behaving according to Murrell 's criterion 
to form deep crustal boundaries that slide against each 
other from which spiral-like Riedel shear planes radiate 
towards the surface to form flower structures. Note that 
the height of the flower structures is proportional to the 
strength of the material; in other words, Riedel spirals 
may form in a relatively thin 'weak '  sedimentary covers 
but may also extend through the 'harder '  crust to depths 
of several tens of kilometers,  possibly down to the 
Moho. 

So far we have only dealt with the formation of faults 
under uniform stress conditions. As deformation 
accumulates on this first set of faults, one may expect (a) 
re-organization of the stress field and (b) translation and 
rotation of the faults themselves. According to the 
Coulomb-Navier  criterion, subsequent faulting should 
therefore take place at an angle Jr/4 - ~p/2 with respect to 
the new 03 orientation to form so-called P shears (Nay- 
lor et al. 1986). Note that, because the per turbed state of 
stress is in most practical situations unconstrained, such 
a reasoning permits us to call any secondary fault a 'P- 
shear '  regardless of its orientation. Also based on the 
Coulomb-Navier  failure criterion, Nur et al. (1986) 
remarked that rigid block rotation in a region undergo- 
ing finite shearing induces rotation of the initial Riedel 
shears with respect to the slip direction in such a way that 
a new set of Riedel shears will form cutting through the 
first set at an angle between 25 ° and 45 ° . The  predictions 
appear  to be supported by field evidence (Nur et al. 

1989). 
In a material obeying Murrell 's failure criterion, to 

predict the orientation of secondary Riedel shears is a 
more complex problem that requires not only a knowl- 
edge of the evolution of the principal stress orientation 
but also of the relative amplitude of the principal stresses 
following finite deformation (cf. equation 14). 

THE NUMERICAL MODEL 

The previous section described the theoretical behav- 
iour of the brittle crust under an ideal uniform stress 
state. We wish now to solve the problem of brittle crustal 
deformation in three dimensions under more general 
conditions, that is following imposed forces or displace- 
ments along specified boundaries. This requires us to 
determine the state of stress within a given volume of the 
crust by solving the equations of force and moment  
equilibrium. The deformations (or strains) should then 
be related to the stresses via a rheological law. 

To solve the equations of force and moment  equilib- 
rium (Fung 1965), we use the finite element method 
(Zienkiewicz 1977). We elected to use 20-node quadra- 
tic parailelepiped elements and a 27-point Gauss inte- 
gration scheme. 

The crust is regarded as an elasto-plastic material 
characterized by two elastic constants E (Young's  modu- 
lus) and v (Poisson's ratio) and a yield strength, T0. The 

i p z  /u0 

u o = shortening 
or extension 

Fig. 3. The finite-element model set-up. Deformation is driven by 
imposed displacements at the base of the crustal block (v 0 and ~ )  and 
along its sides (Uo). The finite-element mesh is made of 5000 elements 
connecting 69,576 degrees of freedom. The components of the stress, 
strain and rotation tensors are calculated at 135,000 integration 

points. 

material behaves elastically unless the state of stress lies 
outside of the yield envelope defined by Murrell 's failure 
criterion (equation 8). The criterion may be expressed in 
a simpler form in terms of stress invariants: 

F--  J~D + 12Top = 0. (16} 

where J2D iS the second invariant of the deviatoric part  of 
the stress tensor and p the pressure. If the predicted 
elastic stress state lies outside of the yield envelope, we 
use the radial-return algorithm of Wilkins (1963) to 
compute the new stress configuration (see Appendix 1 }. 
Beyond yield, the material deforms plastically according 
to an associative plastic flow law (Owen & Hinton 1980) 
in which the plastic strata increment is assumed to be 
normal to the yield envelope. 

The elasto-plastic rheology is used as an analog to 
the brittle deformation of the upper  crust that results 
from macro- and micro-fracturing of rock units as well as 
the more 'ducti le' intra-grain plasticity (Paterson 1978). 
It ~s important to note here that we use the term 
"plasticity' in the sense of the engineers, that is a non- 
linear time- and temperature- independent  mode of de- 
formation. 

To handle properly finite incremental deformation in 
the Lagrangian formulation, we make use of the mid- 
point incremental strain and the Green-Naghdi  stress 
rate (Hughes & Winget 1980) (see Appendix 2). 

EXPERIMENTAL SET-UP 

Several experiments have been performed with the 
numerical model.  They all share the following set-up. A 
piece of crust of thickness L. length 20L and width 5L is 
subjected to a left-lateral wrench imposed along its rigid 
base (Fig. 3). The incremental displacements (u, v. w) 
along the bot tom boundary are imposed in the following 
way: 
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u = 0  

2 x - x0 
v =  v0 ~ arctan ( - - - ~ )  (17) 

Table 1. Values of the plastic Argand 
number (Ar°), the width of the basal 
wrenching (~u¢) and the ratio of normal to 
wrench displacement (r) for the seven 

model runs 

W = 0 ,  Run Ar p Ax r 

where x0 = 5L/2 and Ax is the width over which the 
wrenching is taking place. Ax varies between model 
runs. Note that following the theoretical developments 
above, such a basal boundary condition is a 'natural' one 
in that it respects the mechanical behaviour of the 
material at high pressure. 

In some model runs, in addition to wrenching, the 
crustal block also experiences shortening or extension 
driven by its base in a direction normal to the direction of 
the shear: 

2 ( x - x 0 )  (18) u -- u0 ~ arctan ~ . 

We introduce here the parameter r, defined as the ratio 
between the imposed tangential and normal incremental 
displacements: 

u0 r = - -  (19) 
v0 

The side boundaries at x = 0 and x -- 5L are character- 
ized by a fixed normal displacement (u = u0); whereas 
the side boundaries at y -- 0 and y = 20L are free 
boundaries on which a normal 'containment'  pressure is 
imposed: 

p(z)  = pg(z - L) ,  (20) 

where z is measured from the base of the model, positive 
upwards. This pressure ensures that the material does 
not spread out under its own weight. This set-up is 
conceptually equivalent to plunging the model crust in 
an inviscid fluid of similar density. 

The crust is also subjected to gravitational forces 
proportional to the density of the material, p. 

Two important dimensionless numbers must be de- 
fined: (a) the ratio of plastic to elastic 'strengths': 4T0/E, 
assumed constant in all model runs (4To/E = 8 x 10-4); 
and (b) the ratio of gravitational stresses to the plastic 
strength: ogLl4To. This latter dimensionless quantity is 
referred to as the plastic Argand number, A r  p, and will 
vary amongst the model runs. Assuming that the plastic 
strength and density of the crust are known quantities 
(~  20 MPa and 3000 kg m -3, respectively), variations in 
Ar  p correspond to variations in the assumed crustal 
block thickness. 

THE MODEL RESULTS 

The reference run 

The parameter values characterizing the model runs 
are given in Table 1. The first run, which we will call the 
'reference' run, is characterized by basal wrenching only 
(no contraction or extension), an Argand number 
characteristic of a 30 km thick crustal block and a narrow 

1 11.25 0.02 0. 
2 11.25 0.05 0. 
3 5.625 0.02 0. 
4 11.25 0.02 -0.1 
5 11.25 0.02 -0 .3  
6 11.25 0.02 0.1 
7 11.25 0.02 0.3 

zone of basal shear. The model was run for 11 steps 
leading to a total tangential displacement of L between 
the two far rigid walls or an averaged shear strain of 
L/5L -- 20%. The first step in all model runs is a 'settling' 
step during which the crustal block compacts in response 
to gravitational forces alone; the basal and side velocity 
boundary conditions are turned on at the beginning of 
the second time step only. 

The results of the computation are shown in Fig. 4 as 
contours of the incremental xy-shear strain (Aexy) along 
a horizontal plane close to the surface (y = 0.97L). At 
first (Fig. 4a), a narrow vertical zone of intense shear 
develops above the basement wrench. As deformation 
progresses (Figs. 4b-e), the zone of deformation 
widens, and a series of 'en 6chelon' Riedel-like zones 
develop making an increasingly large angle (7) with the 
y-direction. From time step 6 onwards (Figs. 4f-h), the 
Riedel shears are formed at a constant angle ), and are 
partially abandoned in favour of two thin regions of 
intense shear aligned with the direction of wrenching (Y- 
shears). During the last two time steps (Figs. 4i&j), the 
Riedel shears become sigmoidal as a ridge of non- 
deforming material develops along the central region of 
the model (the white areas). 

We chose to display the results of the computations by 
means of contour plots of Aexy, the horizontal shear 
strain increment. Strain in the field or in the laboratory is 
measured along the strike of the various shear zones. To 
do this in our computations would require computation 
of Aex,y, , where x' and y'  are orthogonal directions 
aligned at _+n/4 angles with respect to the strike of a local 
ridge (or maximum) in Aex,y,. In other words, the 
component of the strain tensor to contour should be a 
function of the local value of the strain tensor. This is a 
very complex inverse problem which we avoided by 
contouring Aexy everywhere. The main drawback of our 
choice is that shear zones inclined at _+:r/4 with respect to 
the x-axis are not visible in contour plots of Aexy. 

Figure 5 shows horizontal contours of the shear strain 
increment for one particular time (end of time step 8) 
but at different depths. As depth increases, the sheared 
region between the two bounding faults narrows and the 
angle (y) that the Riedel shears make with the y- 
direction rapidly decreases. At a depth of 0.80L, the 
Y-shears on either side of the deformed region are 
abandoned in favour of the Riedel shears. The Riedel 
shears have become parallel to the y-axis at a depth of 
approximately 0.6L. 
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Comparison with simplified stress analysis 

Y The numerical model predicts that the first structure 
to develop is a zone of diffuse Y-shear. This is quite 
contrary to the predictions of the simplified stress analy- 
sis developed in the second paragraph and summarized 
in equation (15). The main reason for this apparent 
incompatibility is that, in the finite element model, the 
initial stress and strain distributions are controlled by the 
elastic properties of the material and the geometry and 
nature of the boundary conditions: 

As a result, the stress distribution prior to failure is 
rather different from the one assumed in equation (4). 
Figure 7(a) shows the horizontal shear stress distribution 
after a moderate amount of shear assuming that the 
material behaves in a pure linear elastic fashionl The 
condition of uniform shear stress, o0, assumed in the 
stress analysis (equation 4) is only valid in the central 
region of the model overlying the boundary where the 
displacement is imposed. Following increased defor- 
mation, plastic failure takes place where elastic stress, 
and thus strain, had previously built up: Figs. 7(a) & (b) 
show the horizontal shear strain distribution in the 
modeled crust in the purely elastic case and elastic- 
plastic case, respectively. The plastic deformation 
appears to have inherited the character of the elastic 
solution. It is therefore a result of the elastic component 
of the assumed rheology and the geometry of the bound- 
ary conditions that a narrow, elongated shear zone 
develops at first. One could also argue that the Y-shears 
are the 'kinematically preferable' mode of shear defor- 
mation in that they minimize the volume over which 
deformation takes place. 

a .  

z=L Increasing Depth ~ z=L/2 

AExy: shear strain 

Fig. 4. Contours of the incremental horizontal shear strain, A{~y, 
along a horizontal cross-section at the surface of the finite-element 
mesh for time steps 2-11 (a-j) for the reference model run. The darkest 
areas are regions of maximum incremental strain (> 8%); the lightest 
areas are regions of minimum incremental strain (<  3%). The orien- 
tation of a particular P- and Y-shear is indicated on panels (b) and (e). 
The angle y is defined in panel (e) as well as the location of the vertical 

cross-sections shown in Figs. 6(a)-(f). 

Figure 6 shows contours of the horizontal incremental 
shear along a series of vertical cross-sections oriented 
perpendicular to the direction of shearing (the y-axis) 
for time step 6. The model predicts the formation of a 
well-defined zone of intense deformation rooting into 
the region of imposed shear along the basal boundary 
and opening out upwards in a 'flower-like' structure 
(Harding 1985). The Riedel shears (thick dashed lines in 
Fig. 6) form spiral-like planes. 

A~xy: shear strain 

Fig. 5. Contours of the incremental horizontal shear strain, A::xy, 
along several horizontal cross-sections at different depths through the 
crust at time step 6 for the reference model run. The depths are L; 4L/ 
24, 7L/24, 10L/24 and L/2 in panels (a), (b), (c), (d) and (e),  
respectively. Note that the contour values are not the same for all 
panels but. rather, were chosen to highlight the orientation of the P- 

and Y-shears a t  each depth. 
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AExv: shear strain 

X ~  

Z 
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~AHYi Failure Envelope 

drostatic 
S V ,  / 

/ 
/ E 

,A /  

de;  dE:\ 
dE " X ~ C  

Fig. 8. The evolution of the stress state in the [cq, o3] space following 
the application of a shear stress, o0, on a material point initially under 
hydrostatic stress condition at point A. B is the elastic/plastic stress 
limit and D is the stress configuration following finite plastic defor- 
mation. Also shown are the components of the plastic strain increment 
parallel and normal to the pressure axis (d~l and de±, respectively) at 

locations B and E. 

Y 
Fig. 6. Contours of the incremental horizontal shear strain, Aexy, 
along several vertical cross-sections located between cross-sections a 
and f shown on Fig. 4(e) at time step 6 for the reference model run. The 
darkest areas are regions of maximum strain (> 11%); the lightest 

areas are regions of minimum strain (< 5%). 

As plastic deformation accumulates, the orientation 
of the Riedel shears evolves with increasing deformation 
and depth, at least qualitatively in agreement with the 
stress analysis: the Riedel shears appear to rotate 
counter-clockwise (Figs. 4b-j) with increased defor- 
mation and, at any given time, the shear zones tend to 
rotate with increasing depth in a clockwise manner to 
form a series of spirals (Figs. 5a--e). 

If the oblique shear zones were ' true'  Riedel shears, 
one would expect them to be aligned with the most 
compressive principal stress, 0"3, at the surface and 
rapidly rotate with increasing depth to become parallel 
to y-axis. In fact, the oblique shear zones predicted by 
the numerical model are degenerate Riedel shears or P- 
shears in the sense that their orientation with respect to 

Aexy: shear strain 
a .  

b. elastic 

elasto-plastic 
Fig. 7. Contours of the incremental horizontal shear strain Aexy , 
along a vertical cross-section halfway between the two side boundaries 
(at y = 10L) at time step 2, (a) assuming a perfectly elastic rheology 
and (b) assuming an elasto-plastic rheology based on Murrell's failure 

criterion. 

the principal stress axes behaves according to equation 
(14) but not to equation (15). That  their orientation does 
not obey (15) results from the rapid change of the 
principal stress magnitude following finite plastic defor- 
mation. 

Figure 8 shows schematically the evolution of the 
horizontal principal stresses, 0.1 and 03, following defor- 
mation. At  a given pressure (point A),  determined by 
the weight of the overburden,  the imposed wrenching 
drives the stress state towards the failure envelope 
(point B) by contributing equally to both horizontal 
principal stresses but positively along the 0"i-axis and 
negatively along the 0"a-axis. At failure, the stress state is 
such that equation (15) is valid and faulting should take 
place along properly orientated Riedel shears. Follow- 
ing plastic flow, the stress state migrates along the failure 
envelope to reach a stable configuration that is given by 
the normal projection of the elastic stress state (point C) 
onto the failure envelope (point D) (Wilkins 1963). This 
'wandering' in the stress space involves a modification of 
the amplitude of 0" 1 and 0"3 without affecting the principal 
stress directions. In a material obeying the Coulomb-  
Navier plastic criterion, this stress migration would not 
influence the orientation of the Riedel shears but in a 
material behaving according to Murrell 's failure cri- 
terion, the stress redistribution induces rotation of the 
Riedel shears according to equation (14). 

This point is illustrated in Table 2 where the orien- 
tations of the shear bands as they appear in the compu- 
tations is compared with the theoretical values predicted 
by equation (14) from the computed principal stress 
values and orientations. Qualitatively, the results agree: 
during the first six time steps, the Riedel shears rotate 
counterclockwise in accordance with the principal stress 
orientation and magnitude (via relation 14); in the later 
stages of deformation,  the Riedel shears form at a 
constant angle with respect to the y-axis (y ~- 20°). That  
the computed orientations do not perfectly match the 
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predictions is due to the fact that relationship (9) be- 
tween the three principal stress components on which 
(14) is based is not always valid. 

In conclusion, one may state that the orientation of 
the Riedel shears during finite deformation is rather 
different from that predicted by a simple stress balance 
argument. Modification of the stress state following 
plastic deformation has important implications for the 
orientation of those Riedel shears that are going to take 
up most of the finite deformation. This argument may be 
regarded as a generalization of the 'stress re-orientation' 
of Naylor et al. (1986) following finite deformation on a 
primary set of Riedel shears leading to the formation of 
secondary P-shears. 

Comparison with observations 

The results of the computation corroborate the obser- 
vations of Bartlett et al. (1981 ) from wrench experiments 
on limestone at varying confining pressures: (1) after 
finite deformation, most of the displacement is taken by 
Y shears orientated parallel to the strike of the basement 
fault; (2) Riedel shears form on either sides of the Y 
shears but can accommodate only a small fraction of the 
total displacement; and (3) in cross-section, the shear 
zone is wedge-shaped, its width increasing with accumu- 
lated displacement, 

A major difference between the results obtained in 
most analog experiments is that our model results do not 
reproduce the so-called 'R'-shears. Rather, in the early 
stages of the computations, a region of diffuse defor- 
mation aligned with the y-direction develops. The 
reason for this apparent discrepancy is the elastic com- 
ponent built into our mechanical model that forces 
shearing aligned with the y-axis to dominate in the early 
stages of the 'experiments'; it is only later, when plastic 
deformation becomes substantial, that P-shears appear, 
oriented with respect to the stress tensor in accordance 
with Mohr's incipient failure criterion. 

Finally, the 'long-term' or 'steady-state' solution ob- 
tained from the computations shows strong resemblance 
to field examples of shear zones where most of the slip is 
taken up by one or several faults aligned with the 
direction of shearing (Y-shears) connected to each other 
by oblique sub-faults to form so-called 'duplexes' 
(Woodcock & Fischer 1986). Examples are shown in fig. 
2 of Woodcock & Fischer (1986). 

The increase in volume is confined to the region between 
the two bounding faults nearest to the surface. 

To understand the origin of the dilatation, we must go 
back to the associative plastic flow law used in the 
numerical model that assumes that the plastic strain 
increment is normal to the failure envelope. The direc' 
tion of the strain increment; de p, is shown in Fig. 8 for 
two points on the failure envelope (B andE)  as well as its 
components parallel (de~ and normal (de p) to the 
pressure axis. Note that the ratio of plastic dilatation to 
isochoric deformation p(alsO called dilatancy) is pro- 
portional to the ratio deit/deP~ Close to the summit of the 
parabola (point B), this ratio is relatively large, but as 
pressure increases, dilatancy decreases to rapidly be- 
come negligible (point E). 

It therefore appears that the combination of Murrell's 
failure criterion with an associative plastic flow law leads 
to plastic dilatancy inversely proportional to the confin- 
ing pressure. The question arises as to whether this 
'mathematical' behaviour bears any resemblance with 
the true mechanical behaviour of crustal rocks~ In other 
words, should we use an associative plastic flow law to 

AV/V: Dilatation 
for difl'erent model  runs 
l:l. 

II. 

Dilatancy 

The results of the computation also show that the 
surface overlying the region between the two bounding 
faults bulges upwards (Fig. 6). As none of the lateral 
boundaries experiences a normal displacement and as 
the bottom boundary is forced to remain fiat at all times, 
the surface uplift indicates that the finite shear defor- 
mation induces dilatation (or volume increase). In Fig. 
9(a), a vertical cross-section of the modelled crust is 
shown in which the trace of the incremental strain tensor 
(i.e. incremental volume change) has been contoured. 

g. 

Fig. 9. Contours  of the incremental volume change (AV/V) along a 
vertical cross-section halfway between the two side boundaries  (at y = 
10L) at t ime step 6: panels (a)-(g) correspond to model runs  i -7 ,  
respectively. The darkest areas a r e  regions of max imum volume 
change (>  0.7%); the lightest areas are regions of min imum volume 

'change (<  0 , 3 % )  
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Table 2. Values of 7, the angle made by the Riedel shears with the y-axis, for the 
different time steps of the reference model run. The various columns correspond to 
the values of y: (1) measured from the strain field at the surface; (2) deduced from the 
stress field at the surface; (3) measured from the strain field at the base of the crust; 

and (4) deduced from the stress field at the base of the crust 

(1) (2) (3) (4) 
Step Surface-observed Surface-deduced Base-observed Base-deduced 

2 0 o 12 ° 0 o 4 ° 
3 7 ° 20 ° 0 ° 8 ° 
4 9 ° 22 ° 0 ° 9 ° 
5 16 ° 23 ° 0 ° 9 ° 
6 18 ° 21 ° 0 ° 8 ° 
7 17 ° 23 ° 0 ° 8 ° 
8 18 ° 22 ° 0 ° 7 ° 
9 17 ° 22 ° 0 ° 6 ° 

10 ? 21 ° 0 ° 6 ° 
11 ? 22 ° 0 ° 5 ° 

represent  the brittle de format ion  of  rocks the strength of  
which is known to increase dramatical ly  with confining 
pressure?  

To  answer  that  quest ion,  let us first quantify dilatancy 
in a material  failing according to Murrel l ' s  criterion. 
Fol lowing the associative plastic flow law, the plastic 
strain increment ,  de p, is normal  to the failure envelope:  

OF 
dg p = A O-Oa' 

where  ;t is a scalar funct ion of  the stress state; the trace of  
the plastic strain increment  is a measure  o f  plastic 
vo lume change:  

AV p 
trace (de p) -- - -  -- 12To2, 

V 

and the second invariant  o f  its deviatoric  part ,  EI~o, may  
be expressed in the following manner :  

E~o = 22J20 = _ 12T0p;t 2. 

Di la tancy is defined as: 

AV p 

Murrel l ' s  theory  therefore  predicts that  di latancy is 
inversely p ropor t iona l  to the square roo t  of  the pressure.  
Quali tat ively,  this seems reasonable  (Mandl  1988, p. 
322). Note ,  however ,  that  the di latancy does not  require  
plastic work  (see Append ix  3). 

This inverse relat ionship be tween  dilatancy and con- 
fining pressure has been  observed  in labora tory  experi- 
ments  on Car ra ra  marble  (Scholz 1968, E d m o n d  & 
Paterson  1972, Z h a n g  1992). Dur ing  wrenching experi- 
ments  on l imestone,  Bart le t t  et al. (1981) observed  
upthrust  o f  material  within the wedge-shaped  shear  zone 
inversely propor t iona l  to the confining pressure.  Direct  
measurements  of  crustal de format ion  in active wrench 
systems also tend to indicate that  substantial  volume 
changes  accompany  strike-slip deformat ion  (Raleigh & 
Bur ford  1969, Bur fo rd  et al. 1972). 

S6 16:8-I 

PLAYING WITH THE PARAMETERS 

Shearing above a wide zone o f  basal wrenching 

In the second run,  the width of  the region of  imposed  
wrenching (Ax) along the base of  the model led  crust has 
been  doubled  (Table 1). This apparent ly  minor  modifi- 
cat ion in the basal bounda ry  condit ion leads to a pro- 
found change in the structures that  form within the 
overlying crust. The  single initial shear  zone that  evolves 
into a system of  twin thin shear  zones connec ted  by 
oblique Riedel  shears (Fig. 10a) is replaced by a single 
shear  zone breaking up into segments  that  rota te  to form 
an array of  Riedels  (Fig. 10b). The  zone of  deformat ion  
is more  diffuse and is not  bounded  by well-defined Y- 
shears. 

This result is in good  agreement  with the variat ions in 
structural style observed  in labora tory  exper iments  
where a pile of  sand or  clay is subjected to a basal shear.  
In situations where  the imposed shear  is distr ibuted over  
a wide zone (Wilcox et al. 1973), long over lapping 
Riedel  shears develop and can a c c o m m o d a t e  substantial 
deformat ion.  In situations where  the deformat ion  is 
imposed  across a single basement  fault (Naylor  et al. 
1986), shor ter  Riedels develop in a nar row zone over-  
lying the fault. These  Riedels  can accommoda t e  very  
small amounts  of  deformat ion  and new Riedels  develop 
very rapidly. 

In vertical cross-section, the wedge-shaped  zone of  
deformat ion  is character ized by a larger n u m b e r  of  
spiral-like Riedel  shears (Fig. l l b )  in compar ison  with 
run 1 (Fig. l l a ) .  Also  the zone of  max imum shear  strain 
at the base of  the model  is wider  and reflects the 
geomet ry  of  the basal bounda ry  condit ion.  

In general  terms,  one  could state that  the greater  
width of  the imposed wrench at the base of  the model  
permits  the natural  (or dynamical)  structures,  the P-  
shears,  to take up a greater  p ropor t ion  of  the overall  
deformat ion  to the det r iment  of  the forced (or kinema-  
tic) structures,  the Y-shears. By dynamical  s tructures we 
mean  those that  form in accordance  with the stress 
distribution and the mechanical  proper t ies  of  the 
material ;  kinematic  structures are those that  form in 
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A~x'~:a shear strain for different model runs 

Fig. 10. Comparison between different model runs of the incremental horizontal strata ( , ~ , )  along a horizontal 
cross-section at the surface of the crust at t ime step 6: panels (a)-(g)  correspond to model  runs 1-7, respectively. Note that 
the contour values are not the same for all panels but, rather, were chosen to highlight the orientation of the P- and Y-shears 

in each run. 

response to the imposed boundary conditions, regard- 
less of the mechanical properties of the material. 

Reducing Ar p 

To reduce A r  p is equivalent to reducing the gravi- 
tational stresses with respect to the strength of the 
material. The main result is a small yet noticeable 
widening of the region of shear with respect to the depth 
of the modeled crustal layer as the main shear planes on 
either side of the shear zone tend to become less steep 
(Fig. 11c). This result is in good agreement with Bartlett 
et al. 's (1981) laboratory experiments on limestone. The 
distribution of deformation between the Riedel shears 
and the twin shear zones is quite similar to that of the 
first experiment (compare Fig. 10c with Fig. 10a). Dila- 
tancy is more important in this third experiment (com- 
pare Fig. 9c with Fig. 9a). This is because lowering the 
gravitational stresses results in a reduction of the mean 
confining pressure, in other words, a larger proportion 
of the deforming body lies in the vicinity of the apex of 
the failure envelope where dilatancy is a maximum. 

It must be stressed here that the reduction in A r  v must 
be understood as a thinning of the modeled crustal 
block. Note,  however, that reducing the thickness of the 
modeled layer by a factor of 2 only led to a small increase 
of the width-to-height ratio of the wedge-shaped zone of 
deformation. The width-to-height ratio of the zone of 
deformation is therefore approximately constant and 
quasi-independent of A r  p. The proportionality between 
the depth of imposed wrenching and the width of the 
shear zone as postulated by Naylor et al. (1986) is thus 
confirmed, to first order,  by the numerical model. 

Pushing 

In runs 4 and 5, the crustal block is, in addition to the 
imposed basal wrench, subjected to horizontal shorten- 
ing in a direction normal to the strike of the shear zone. 
If the normal displacement is much smaller than the 
shear displacement (small ]r 1), the net result is a narrow- 
ing of the shear zone at its base (Fig. 1 ld)  and a widening 
at its top. The overall shape of the shear zone (seen in 
cross-section) therefore resembles more that of a 'palm- 
tree' (or convex-upwards) structure (Horsfield 1977). 
This result is in good agreement with the observations of 
Horsfield (1977), Harding (1985), Naylor et al. (1986) 
and Richard & Cobbotd (1989) both in the field and in 
scaled laboratory experiments. 

For finite values of Irl (run 5, Fig. 1 le), the zone of 
crustal deformation becomes very wide and thrusting 
results in thickening of the crust. One must. however. 
realize that in the case of a finite r value, the computed 
strain field is the superposition of two modes of defor- 
mation: strike-slip and thrusting. Strike-slip defor- 
mation is a maximum along the centre of the model (Fig. 
l le)  whereas thrusting takes place along two planes 
dipping at an angle of approximately _+ ~/4 (Fig. 12). 
There is apparently little contamination of one mode of 
deformation by the other. In other words, two separate 
sets of structures develop: a series of near-vertical shear 
zones at the centre of the model and two outward- 
dipping thrust faults. The dip of the thrust planes 
(~-_+0z/4) is in agreement with the 'theoretical'  dip 
determined from simple stress distribution arguments 
(Braun 1993). Work is in progress to investigate the 
partitioning of deformation in "general' transpressive 
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Aexy: shear strain 
for different model runs 
a .  

Reference Model 
b. 

Table 3. Values of  y at different t ime 
steps for runs 1, 5 and 7 as deduced from 
the computed  principal stress orientations 

and magni tudes  via equation (14) 

Step Run  1 Run  5 Run  7 

2 12 ° 13 ° 12 ° 
3 20 ° 16 ° 36 ° 
4 22 ° 16" 38* 
5 23 ° 17 ° 38 ° 
6 21 ° 19 ° 40 ° 

tL. 

P_ 

£ 

E 

g. 

A 

deduced from sand-box experiments. This relative 
'rotation' of the P-shears is due to the rotation of the 
horizontal principal stresses. At high lr] values (Fig. 
10e), the distribution of shear at the surface is domi- 
nated by a narrow belt of intense shear deformation. 
There is some evidence of P-shears forming in this 
narrow region but they form a very low angle with the 
direction of wrenching (the y-axis). This apparently 
contradictory result is easily explained by recalling that 
the P-shear orientation is not only a function of the 
principal stress orientations but of their magnitude also 
(equation 12). Indeed, the surface orientation of the 
'theoretical' Riedel shears calculated from the com- 
puted values of the principal stresses according to (12) 
are compared in Table 3 for runs I and 5 and show good 
agreement. 

Dilatancy is strongly reduced (Fig. 9d) as the com- 
pressional component of the displacement results in 
increased confining pressure at all depths within the 
model. 

Fig. 11. Compar ison  between different model  runs of  the  incremental  
horizontal strain (Aexy) along a vertical cross-section halfway between 
the two side boundaries (at y = 10L) at t ime step 6: panels (a)-(g) 
correspond to model  runs 1-7, respectively. The  darkest  areas are 
regions of  max imum strain ( >  11%); the  lightest areas are regions of 

min imum strain (<  5%).  

systems by exploring the complete range of r-values 
(from 0 to o0). 

For small values of [r[ (Fig. 10d), the P-shears form at 
a greater angle with respect to the direction of wrench- 
ing, a result similar to that of Naylor et al. (1986) 

Aezx: shear (thrust) strain 

A v 

Fig. 12. Contours  of  the  incremental  vertical shear  strain (Aez~) along 
a vertical cross-section halfway between the two side boundaries  (at y 
= 10L) at time step 6 for the  model  run 5 (r = -0 .3 ) .  The  shaded areas 
are regions of positive strain; the stippled areas are regions of negative 

strain. 

Pulling 

The results of runs 6 and 7 in which r = 0.1 and 0.3, 
respectively, are shown in Figs. l l (f)  & (g) as contour 
plots of the shear strain increment in a vertical cross- 
section. In both cases, the imposed extensional displace- 
ment resulted in a concentration of the deformation 
along well-defined P-shears (Fig. 10e) and a definite 
concave-upwards or tulip-like shape for the deforming 
region seen in cross-section (Fig. l lf) .  The compu- 
tations therefore agree very well with observations from 
the field and laboratory experiments (Naylor et al. 1986, 
Richard & Cobbold 1989): whereas palm-tree (or posi- 
tive flower) structures develop in transpression experi- 
ments, tulip (or negative flower) structures develop in 
transtension. 

At the surface, the strike of the P-shears measured 
from the direction of wrenching is smaller than in the 
pure strike-slip experiment (Fig. 100 for small values of 
Irl, a result similar to the observations of Naylor et al. 
(1986); for large values of ]r], the P-shears are very well 
defined and form at a greater angle with respect to the y- 
direction (Fig. 10g) in qualitative accord with the simpli- 
fied stress analysis (Table 3). 

In the transtension experiment, dilatancy is large, 
even at intermediate crustal depths. 
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CONCLUSIONS 

Murrelt's failure criterion 

The use of Murrell's extension in three dimensions of 
Griffith's failure criterion has led to interesting results 
regarding the geometry of faulting under strike-slip 
stress conditions. 

(a) The spiral-like shape of Riedel shears as they 
extend below the surface to form so-called ~flower'- 
structures is a natural behaviour of faults in a material 
obeying Murrell's failure criterion, There is no need. as 
with the Coulomb--Navier criterion, to call upon a mech- 
anical discontinuity in a deep basal layer along which the 
Riedel shears originate. 

(b) Under  special stress conditions, incipient fault 
geometry is, as in the case of the more classical 
Coulomb-Navier  failure criterion, related to the orien- 
tation of the maximum and minimum principal stresses 
but also, and contrary to the Coulomb-Navier  failure 
criterion, to the relative magnitude of the maximum and 
minimum principal stresses. 

(c) The dilatant behaviour of rocks accompanying 
brittle shear deformation is approximately represented 
by combining an associative flow law with Murrell's 
failure criterion. Indeed, Murrell's theory predicts that 
dilatancy is inversely proportional to the square root of 
the confining pressure, a result in qualitative agreement 
with the results of laboratory experiments performed on 
rock samples characterized by low initial porosity. 

Under specific stress conditions, however, relatively 
simple relationships have been derived (in this paper 
and by other authors) from Murrell's failure criterion 
that are of direct application to observational geology. 
More general identities could be derived by simple 
numerical computations. Ultimately, complex three- 
dimensional stress-strain analyses like the one pre- 
sented in this paper are likely to flourish. All these 
factors should help in determining the applicability of 
Murrell's criterion to the brittle behaviour of crustal 
rocks. Deformation experiments at atmospheric press- 
ure on analogue materials are unlikely to determine 
whether Murrell's criterion is applicable to crustal mech- 
anics. Indeed. because the only material property in the 
expression of Murrell's criterion, the tensile strength, 
scales like a pressure (unlike the angle of internal fric- 
tion, a dimensionless parameter) ,  experiments to test 
the validity of Murrell 's criterion must be done at high 
pressure (similar to those encountered in the Earth) or 
on material characterized by an extremely (possibly 
unrealistically) low tensile strength (~100 Pa). 

Finite deformation numerical shear experiments 

The three-dimensional finite element model has led to 
the following conclusions regarding the formation and 
evolution of strike-slip terranes. 

(a) Oblique Riedel and Y-shears are the two dominant 
modes of shear deformation in a crust obeying Murrell's 
failure criterion. 

(b) In the early stages of deformation, most of the 
deformation is taken up by strike-slip movement along a 
zone of diffuse shear aligned with the direction of 
imposed shear. This is a consequence of the finite elastic 
strength of the crust. 

(c) After finite deformation, the shear zone widens 
and Riedel shears develop between two well-defined Y- 
shears. 

(d) The orientation of the Riedel shears as a function 
of the direction and amplitude of the computed principal 
stresses is in semi-quantitative agreement with geo- 
metrical arguments derived from a simplified stress 
balance. Because their orientation is determined by the 
stress distribution after finite deformation, the Riedel 
shears are equivalent to the P-shears defined by Naylor 
et al. (1986). 

(e) The model predicts the formation of spiral-like 
Riedei shears similar to the flower structures observed in 
the field and in the laboratory. 

(f) As the region of imposed wrenching at the base of 
the modelled crust is widened, the shear zone widens 
and Riedei shears take up most of the deformation at the 
expense of the bounding Y-shears. 

(g) The width of the shear zone is proportional to the 
thickness of the sheared layer, but the relationship is not 
linear. 

(h) The superposition of a normal component of 
deformation to the imposed basal wrenching movement 
leads to profound changes in the morphology of the 
shear zone: transpression results in a widening of the 
shear zone and the formation of 'palm-tree' structures 
whereas transtension leads to a narrowing of the shear 
zone and the formation of 'tulip' structures, in accord- 
ance with observations and laboratory experiments. 

(i) The orientation of the Riedel shears is also affected 
by the presence of an in-plane stress: a small amount of 
compression rotates the P-shears away from the direc- 
tion of wrenching whereas a large amount of compres- 
sion rotates them towards the direction of wrenching; a 
small amount of tension rotates the Riedels towards the 
direction of wrenching whereas a large amount of ten- 
sion rotates them away from the direction of wrenching. 
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APPENDIX 1 

In the space of principal stresses (at, 02, o3), Murrell's yield 
envelope (equation 8a) may be expressed as follows: 

F = (01 - 0"2) 2 + ( O  2 - -  0"3) 2 + (0" 3 - -  O"1) 2 + 24T0(01 + 02 + 03) = 0 
(A1) 

or, in matrix form: 

where 

F = XTHX + 2BTx = 0, (A2) 

X = (O" 1 0" 2 03) (A3) 

and 

B = 2 T  0 . (A5) 

The direction of the normal, N, to the yield surface at a point X on 
the surface may be obtained by differentiating F with respect to the 
principal stress components: 

N = n x  + B. (A6) 

The normal projection from a point X0 outside of the yield envelope is 
given by: 

X e = X o + a(HXp + B) (A7) 

or 

Xp = (I - aH)-I(Xo + aB), (A8) 

where I is the identity matrix. The value of a may be obtained from the 
following expression, derived from the assumption that the projection, 
Xp, lies on the yield surface (F(Xp) = 0): 

X~HXQ T 2 
( 1 - 2 )  2 + 2 B  X ° + 2 4 a T ° = O  (A9) 

It is interesting to notice that a is the solution of a third-order 
equation which possesses one or three solutions. One may show that 
the stress space may be divided into two separate regions where there 
exist either one or three normal projections onto the yield envelope. In 
the finite element calculations, we choose the projection closest to the 
elastic stress state. 

APPENDIX 2 

1/2 The mid-point strain, e 0 , is defined as follows: 

~t/2 _ 1 / '  a u ,  i (A10) q - 2/axj--~- 7- ~ ] '  

where the u i are the components of the incremental displacement 
vector and the x/u2 are the spatial co-ordinates of the deformed 
material in a configuration half-way between the pre- and post- 
deformation configurations, x ° and x l: 

1 0 
x~/2 = x ° + (xi - xi) ( A l l )  

2 

One may show (Hughes & Winger 1980) that the mid-point strain is 
a second-order approximation to the true measure of strain in large 
deformation analyses and therefore carries the same kinematic infor- 
mation as the incremental Eulerian strain or incremental Lagrangian 
strain. The main advantages of the mid-point strain over other large 
deformation measures result from its similitude to the infinitesimal 
linear strain: (a) a simple, linear expression in terms of displacement 
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derivatives and (b) its trace is a second-order approximation to volume 
change. 

(Z F’FZ u”U (A17) 

During finite deformation that may involve finite rotations, the and computing its square root by making use of the Cayley-Hamilton 
stress rate 5 (or rate of change of the Cauchy stress over the defor- theorem: 
mation interval), is not properly transformed. The stress rate is not an 
objective quantity (Hughes & Winget 1980). The Green-Naghdi stress ” _ D - (1: -- I,)C - 1,131 

(Afg) 
rate defined as: I,--I,& ’ 

o-=ir+axw-M’XU, (A12) where 

where D = PC, tA19) 

uS=&R- (A13) I is the identity matrix and 5, ISand I3 are the invariants of U obtained 

and R is the rotation matrix (a proper-orthogonal matrix formed from 
from the invariants of C (I, . I, and 15 via: 

the anti-symmetric part of the deformation gradient), is an objective 
quantity and possesses an interesting property: 

i, = VI: 

6 = R’o*R 1. Y \/IT+ 711- 
a (A14) I -31 (A’W 

oR = RT’oR. (A15) 
Once I/ has been found. R may be obtained from: 

It follows that a rather complex, but correct, measure of stress 
change (A12) is transformed in a rather simple expression (A14) 
following an arbitrary change of coordinates. 

The complete finite deformation algorithm may be summarized as 
follows: 

(a) compute the incremental mid-point strains, E”‘; 
(b) compute the rotation matrices, R”, Rln and R’ corresponding to 

the total deformation in configurations 0, f and 1, respectively; 
(c transform the initial stress and mid- oint strain tensors according 

to 6 a = (R”)*u”Ro and, sin = (R’n)Tcl R 112. R 
(d) calculate the new ‘rotated’ stresses,‘&, from the previous 

‘rotated’ stresses, $a, and the ‘rotated’ mid-point strain, EL”, following 
the elasto-plastic constitutive relationship via the radial-return algor- 
ithm; 

(e) transform back the ‘rotated’ stresses according tour = Ra’,R”. 
The only remaining step is to design an efficient way of deriving the 

rotation matrix R by performing the polar decomposition: 

R=FU I, 6,421) 

APPENDIX 3 

The incremental mechanical work following an incremental plastic 
deformation, de!‘. at stress level o is given by: 

da = da”,?. (A22) 

which, according to the associative Row law, may also be expressed as: 

dd2 = - R127;,p, (A23) 

or, in terms of the second invarrant of the plastic strain increment 
tensor: 

F=RU, (A16) dLl = I;‘- i2?‘;$&g. (~24) 

of the deformation gradient, F, into its symmetric, U, and anti- The combination of Murrell’s criterion and an associative flow law 
symmetric, R parts. This may be easily done by calculating the right therefore predicts that the incremental plastic work is proportional to 
Cauchy strain tensor: the deviatoric strain increment and the square root of the pressure. 


